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The Crystal Structure and Absolute Configuration of (+)-Methyl p-Tolyl Sufoxide
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The crystal structure of (+)-methyl p-tolyl sulfoxide has been solved by the heavy-atom method and
refined by Fourier and least-squares techniques. The absolute configuration has been determined by the
anomalous phase displacement technique with the sulfur atom acting as the anomalous scatterer. The
space group is P2;2,2; with four molecules per unit cell of dimensions a=5-826 (6), b=28-621 (8) and
c=16-435 (3) A. Three-dimensional data (Cu K«) were collected with a Picker automatic diffractometer.
The final R indices obtained for the two configurations are 0-034 and 0-044 respectively, for 832 observed
reflections. In the notation of Cahn, Ingold & Prelog the correct absolute configuration at sulfur is R;
the same assignment had been made earlier on the basis of chemical evidence.

Introduction

One of the most fruitful approaches to the elucidation
of a specific reaction mechanism lies in the study of the
reaction stereochemistry which in turn may yield clues
concerning the geometry of the transition state. In
general, knowledge of the dynamic stereochemistry of
carbon centers has played a key role in the evolution
of our present detailed picture of the reaction mecha-
nisms of such centers. The importance of sulfur as a
reaction center in biological processes is well documen-
ted; however, relative to the corresponding situation
for carbon centers, fundamental mechanistic studies of
sulfur centers are rare. The work reported here is part
of an effort to rigorously settle the question of abso-
lute and relative configuration for a number of opti-
cally active compounds with asymmetric sulfur centers.

At the time this study was started the conversion of
(—)-p-tolyl (—)-menthyl sulfinate (I) to (+)-methyl
p-tolyl sulfoxide (II) by treatment with methyl Grig-
nard reagent was thought to proceed via inversion of
configuration, based on optical rotatory dispersion and

circular dichroism studies by Mislow, Green, Lauer,
Melillo, Simmons & Ternay (1965).
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The conversion of (II) to (III) by treatment with
p-CH,;C¢H,SO,NSO is accompanied by formation of
S0, and is assumed by Day & Cram (1965) to proceed
via a mechanism in which the entering and leaving
groups form part of a quasi-6-ring transition state. For
overall trigonal bipyramidal geometry at the sulfur
atom, this would mean that the entering and leaving
groups occupy equatorial (radial) positions. Optical
rotatory dispersion data led Day & Cram to conclude
that conversion of (II) to (III) also involved inversion
of configuration at the asymmetric sulfur atom. Indeed,
it so far appears that in organo-sulfur stereochemistry
nucleophilic displacement at the asymmetric sulfur
center always proceeds with inversion. However, the
evidence in support of this rule is not always as rigor-
ous as one might wish. It is therefore important that
the absolute configurations of representative com-
pounds be established unambiguously. The crystal struc-
ture and absolute configuration of the p-iodo analog
of (I) was established by X-ray diffraction methods by
Fleischer, Axelrod, Green & Mislow (1964). The abso-
lute configuration of the molecule was determined
through the known configuration of the (—)-menthyl
group. These investigators were also able to relate the
absolute configuration of the p-iodo analog to that
of (I). Since a knowledge of the absolute configuration
of (II) would provide unambiguous evidence for the
steric course of the Grignard conversion of (I) to (II)
we felt that (IT) would be the most logical compound to
investigate next. During the course of this work the
absolute configuration of (II) was determined by
chemically relating it to sulfoxides of known absolute
configuration (Axelrod, Bickart, Jacobus, Green &
Mislow, 1968).

Experimental

Crystals were grown from n-heptane solution by eva-
poration at room temperature. The space group was
determined from symmetry and systematic absences
(h00, 040, 00/ absent for odd indices) observed on
Weissenberg and precession photographs. The cell
dimensions were established from a least-squares cal-
culation with a set of reflections measured on a Picker
diffractometer. For intensity measurements a suitable
crystal was ground into a sphere of radius 0-0125 cm.
The high vapor pressure of the substance made it
necessary to give the crystal a protective coating which
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consisted,of a thin layer of Eastman 910 adhesive and
a further coat of ‘Gluebird’. (The high solubility of the
sulfoxide in water prevented the immediate use of the
water-based glue.) Three-dimensional diffraction data
for one octant [26 (max)=160°] were collected with a
Picker automatic diffractometer using Ni filtered Cu K«
radiation. In order to minimize coincidence losses,
count rates were automatically held below approxi-
mately 10,000 counts.sec™! by a set of attenuators.
Three check reflections which were used to monitor
the condition of the crystal remained stable for the
first half of the run; however, after that a gradual
decrease in the intensities were observed. The maximum
decrease amounted to about 7%. Because of the decay
problem, and because we felt that the application of
the R index method (Ibers & Hamilton, 1964) to the
absolute configuration determination would be straight-
forward, we did not collect data for any Bijvoet pairs.

The data set was corrected for Lorentz, polarization
and absorption (#R=0-353) effects in the usual man-
ner. Furthermore a decay correction based on the
observed drop in intensities was applied. The standard
deviations of the observed structure factors were esti-
mated from the estimated standard deviations of the
recorded scan and background counts, where each
recorded number of counts N was assigned an e.s.d.
from the expression s(N)=N1/240-005N. All reflec-
tions whose intensity was less than three times the
corresponding standard deviation were treated as ‘un-
observed’. Out of 1046 available reflections 832 were
then recorded as ‘observed’. Refinement of the struc-
ture was carried out using only the ‘observed’ reflec-
tions.

Crystal data

(+)-Methyl p-tolyl sulfoxide, CsH;(SO.

M. W.154-09

Space group: P2,2,2, from absences and intensity sym-
metry

a = 5826(6) A

b = 8621(8) A

¢ =164353) A

dm=1']9 dx=1'24 g.cm_3

Z =4

t =23°C, 1 Cu Ka;=1-54051
u =283 cm! for Cu Ka

Solution and refinement of the structure

The position of the sulfur atom was found from a
three-dimensional Patterson map. A Fourier summa-
tion phased on the sulfur atom immediately revealed
the location of all the carbon atoms and the oxygen
atom. Two cycles of full-matrix least-squares refine-
ment with isotropic temperature factors reduced the R
index to 0-12 and two further cycles with anisotropic
temperature factors reduced R to 0-077. A difference
Fourier synthesis was then calculated from which the
hydrogen positions were determined. All ring H atoms
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were very well defined; however, the peaks correspon-
ding to the methyl H atoms differed significantly in
height, with one atom in each group being particularly
poorly defined. We considered the possibility of rota-
tional disorder, but as can be seen from Fig. 1, which
shows a section through the ring methyl group, there is
no real indication of such disorder. Two cycles of least-
squares refinement with all atoms included, the H
atomswithindividualisotropictemperaturefactors,gave
an R index of 0-045. At this stage the real and imagi-
nary correction terms to the atomic scattering factors
were introduced for sulfur and oxygen. The values
4f5=0-3, Af5=0-6, Af3=0-0 and A4f;=0-1 were taken
from International Tables for X-ray Crystallography
(1962). Both enantiomers were then refined to conver-
gence. The lowest R indices for the two enantiomers
were 0-044 and 0-050 respectively. The enantiomer with
the lower R index was now assumed to be the correct
one.

Discrepancies between F, and F, for some high in-
tensity reflections indicated secondary extinction effects.
Correction of the data by use of the method of Zacha-
riasen (1963) had the immediate effect of reducing R
from 0-044 to 0-038.

The weighting scheme prior to the secondary ex-
tinction correction was that proposed by Hughes
(1941), and after the correction the weight of (4F)? was
made equal to the reciprocal of the variance of the
corresponding F,. Four additional cycles of least-
squares refinement of the correct enantiomer with all
hydrogen atoms included gave a final R index of 0-034.
The incorrect enantiomer was also refined to conver-
gence and gave an R of 0-044, When anomalous cor-
rection terms were omitted the structure could be refi-
ned to R=0-036.

Computing procedures

All calculations were performed on an IBM 7044 com-
puter, for the most part using programs listed else-
where (Hope & Christensen, 1968).

The least-squares program was modified by the
authors to calculate structure factors which include
both the real and imaginary correction terms for ano-
malous scattering. The program minimizes the quan-
tity S=2 w(K.Fo—G|Fc[)? by full-matrix methods. G
is one of the adjustable parameters, which is reset to
its original value by changing K after each cycle. Es-
timated standard deviations were obtained from the
expression (a::S/m)!/2, where ay; is the diagonal element
in the inverse normal equation matrix, and m is the
difference between the number of observations and
the number of parameters adjusted.

The isotropic temperature factor is of the form
exp(— B sin20/4?), and the anisotropic of the form
exp(— B11a*2h2/4—B,,b*2k2[4—B33c*212[4-B,a*b*hk (2
—Bysa*c*hl|2-B,3b*c*klf2). The atomic form factors for
sulfur, oxygen and carbon are those given by Hanson,
Herman, Lea & Skillman (1964). For hydrogen the
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form factors used are those given by Stewart, Davidson
& Simpson (1965).

The secondary extinction correction program, writ-
ten by A.T.Christensen, was also modified by the
authors to calculate structure factors with form factors
which include the real and imaginary components of
the anomalous scattering corrections. The program
applies the correction in the form Feorr= Fo(l + C8J,)!/2,
where C is a constant and

B = 2(1 +cos*28)/(1 +cos220)? -

(Zachariasen, 1963).
The R index is defined by R=3, ||Fo|—|Fc||/Z |Fol
(observed F’s only).

d4%/duR
dAy/duR

Discussion

The difference in the R indices for the two configura-
tions is the largest yet reported for structures with
either sulfur or silicon as the anomalous scatterer. The
application of Hamilton’s generalized R factor method
(Hamilton, 1965) to test the validity of the configura-
tional assignments shows that the probability of the .S
configuration being the correct one is considerably
smaller than 0-001%, so that the configuration around
the sulfur atom is R in the notation of Cahn, Ingold &
Prelog (1956). This is in agreement with the absolute
configuration assigned by Axelrod et al. (1968). Since
the absolute configurations of both ends of the con-
version reaction of sulfinate ester to sulfoxide have now
been determined rigorously, one can unambiguously
conclude that this conversion occurs with inversion of
configuration at the sulfur atom.

H(12) %
@H(H)

0 y 04

Fig.1. Difference electron density map. Section through the
plane of the ring methyl hydrogens. Contours are drawn for
0-10, 0-15, ... e.A-3. Crosses indicate the positions from the
least-squares refinement.
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The final positional and thermal parameters for the
R configuration together with their estimated standard
deviations, are given in Tables 1, 2 and 3. A listing of
the observed structure factors and those calculated
from the final parameters (R configuration) is given in
Table 4. The molecular geometry parameters not
involving hydrogen are given in Fig.2. The ‘uncorrec-
ted’ distances and angles were calculated from the
final positional parameters while the ‘corrected’ dis-
tances (given in parentheses) were derived from co-
ordinates obtained by the method of Cruickshank
(1961) following an analysis of the thermal motion of
the molecules (Schomaker & Trueblood, 1968).

S(1)
02
C(3)
C4)
C(5)
C(6)
C(7)
C(8)
€9
C(10)

Table 1. Positional parameters
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(with estimated standard deviations)
Sfor sulfur, oxygen and carbon atoms

X
0-4558 (2)
0-5687 (5)
0-5267 (13)
0:6298 (6)
0-8330 (6)
0-9588 (8)
0-8842 (6)
0:6820 (7)
0-5491 (7)
1-0262 (11)

Y
0-2122 (1)
0-0994 (3)
0-4007 (6)
0:2199 (4)
0-1409 (4)
01425 (4)
02244 (4)
0-3035 (4)
0-3011 (4)
0-2266 (8)

zZ
0-6073 (1)
0-5512 (1)
0-5682 (3)
0:6976 (2)
0:7018 (2)
0:7723 (2)
0-8400 (2)
0-8346 (2)
0:7646 (2)
0-9172 (3)

(v

Fig.2. (a) Interatomic distances (from parameters in Table 1), and (in parentheses) interatomic distances corrected for anisotropic
thermal motion effects. E.s.d.’s are 0-003-0-006 A. (b) Bond angies (uncorrected). E.s.d.’s are about 0-3°. The drawing re-
presents a projection of the molecule on the plane of the benzene ring. The correct absolute configuration is shown.
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Table 2. Anisotropic thermal parameters (with estimated standard deviations) for sulfur,
oxygen and carbon atoms

By B>, Bi; By, B3 B3

S(1) 5-83 (4) 6:02 (4) 627 (4) —1:12 (5) 0-28 (4) —071 (4
0(2) 9:42 (18) 596 (11) 6:28 (12) —0-99 (15) 0-68 (15) —1-83 (10)
C3) 9-22 (42) 573 (20) 7-60 (27) —0-43 (28) —1-59 (30) 0-13 (20)
C(4) 4-84 (15) 439 (14) 505 (15)  —0-50 (15) 091 (13)  —0-28 (13)
C(5) 5-20 (19) 5-21 (18) 596 (19) —0-04 (15) 1-55 (17) —1-12 (15)
C(6) 4-93 (18) 553 (18) 6-68 (20) 0-98 (18) 0-36 (18) —0-10 (15)
C(7) 609 (18) 4:04 (14) 5-17 (16) —0-05 (16) 0-90 (14) 0-42 (13)
C(8) 679 (22) 4-62 (16) 5:05 (17) 065 (17) 158 (17)  —0-29 (15)
C(9) 5-04 (16) 4-86 (15) 6-38 (18) 0-73 (19) 1-18 (17) —0-17 (15) .
C(10) 871 (33) 7-77 (26) 5-91 (23) 0-44 (31) —0-34 (23) 0-95 (22)

Table 3. Positional and isotropic thermal parameters (with estimated standard deviations) for hydrogen atoms

x ¥y z B
H(11) 0:9705 (80) 0-1561 (45) 0-9514 (27) 9-27 (143)
H(12) 1-0183 (93) 0-3078 (46) 09477 (26) 9-83 (161)
H(13) 1-1934 (75) 0-2203 (54) 09033 (22) 10-80 (157)
H(14) 0:6320 (55) 0-3563 (35) 0-8778 (18) 6-15 (90)
H(15) 0-3902 (54) 0-3448 (35) 0-7638 (16) 5-46 (85)
H(16) 0-8944 (59) 0-0959 (39) 0-6531 (18) 7-19 (93)
H(17) 1-1051 (58) 0-0928 (36) 0-7782 (18) 5-40 (84)
‘H(18) 0-6733 (69) 0-3942 (55) 0:5550 (25) 7-94 (171)
H(19) 04599 (78) 0-4649 (45) 0-6017 (23) 9:71 (146)
H(20) 0-3885 (84) 0-4125 (53) 0-5163 (24) 12-13 (140)

o} c
(b)

Fig.3. (a) Projection along the b axis (top view). (b) Projection along the a axis (front view).
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Table 4. Observed and calculated structure factors
The five columns in each group list /, 10F,, 10F, the phase angle (°) and 100/0(F5,).
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Two different calculations were performed, one in  +8:2°. The signs are consistent with the convention
which all ten ‘heavy’ atoms were incorporated in the proposed by Klyne & Prelog (1960).
rigid body, and one in which the rigid body consisted
of the tolyl carbon atoms plus the sulfur atom. The Table 5. Principal components of rigid body translation
librational ellipsoids for the two rigid bodies are very and libration tensors
similar, both 1mn magnitude and orl‘entatlon. ,The root- Columns 1 and 2 contain the r.m.s. translational amplitudes (A)
mean-square differences between ‘observed’ and cal- and r.m.s. librational amplitudes (degrees) respectively for the
culated Uy are 0-004 and 0-003 A2 respectively. The  10-atom rigid body. Columns 3 and 4 are the amplitudes for
angle between the vector S-C(7) and the major libra-  the 8-atom rigid body.
tional axis is 14° for the ten-atom case and 8° for the 0-28
eight-atom case. The magnitudes of the principal axes 0-21
of the translational and librational tensors for the ten 0-21
atom rigid-body are listed in Table 5. The screw com-
ponents are all very small. The fold angle between the Distances and angles involving hydrogen atoms are
planes defined by the atoms C(3)-S(1)-C(4) and listed in Tables 6 and 7, respectively. Packing dia-
O(2)-S(1)-C(4), respectively, is —71-3°, and the twist grams of the structure are shown in Fig.3(a) and (b),
angle needed to make the projection of the line representing views along the b and a axes respectively.
S(1)-O(2) coincide with that of the line C(4)-C(5) is No unusual intermolecular contacts were found.

0-28
0-22
0-21

W H =
—— )
W
3=

A C26B - 13
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. Table 6. Carbon-hydrogen distances
E.s.d.’s are about 0-04 A.

C(3)—H(8) 0-88
C(3)—H(19) 0-87
C(3)—H(20) 1-18
C(5)—H(16) 0-96
C(6)—H(17) 0-96
C(8)—H(14) 0-89
C(9)—H(15) 100
C(10)-H(11) 0-89
C(10)-H(12) 0-86
C(10)-H(13) 1-00

Table 7. Angles involving hydrogen atoms
E.s.d.’s are about 2° for X-X-H and about 4° for H-X-H.

S(1) —C(3)—H(18) 105
S(1) —C(3)—H(19) 104
S(1) —C(3)—H(20) 100
H(18)~-C(3)—H(19) 129
H(18)-C(3)—H(20) 119
H(19)-C(3)—H(20) 9%
C(4)—C(5)—H(16) 119
C(6)—C(5)—H(16) 121
C(5)—C(6)—H(17) 124
c(—C(6)—H17) = 115
C(7)—C(10)-H(11) 109
C(7)—C(10)-H(12) 118
C(7)—C(10)-H(13) 110
H(11)-C(10)-H(12) 100
H(11)-C(10)-H(13) 118
H(12)-C(10)-H(13) 103
C(1)—C(8)—H(14) 119
C(9)—C(8)—H(14) 119
C(4)—C(9)—H(15) 120
C(8)—C(9)—H(15) 121

Very few data on bond distances and angles are
available for organic sulfoxides. Abrahams (1956) has
given some data for symmetrical sulfoxides. The
C-S-0O angle for a series of such compounds is nearly
constant at 106 ° while the C-S—C angle varies from 93
to 114°. Hine (1962) in a study of the structure of S-
methyl-L-cysteine sulfoxide found the C(methyl)-S-O
angle to be 107-5°; the corresponding angle in the
present case is 105:5°. Our value of 97-5° for the
C-S—C angle also seems to agree well with previous
results.

Distances and angles in the benzene ring show some
variation. Three of the bonds, C(4)-C(5), C(5)-C(6)
and C(7)-C(8), are somewhat shorter than the other
three which are all close to the accepted value of 1:396
A. The internal angle at C(4), to which S is attached,
is very close to 120°. Recent observations (Carter,
McPhail & Sim, 1966; Hope, 1969) have suggested
that electron-withdrawing substituents on a benzene
ring lead to internal angles greater than 120° at the
carbon atom to which they are attached. On this basis
one must conclude that the sulfoxide group is not
strongly electron-withdrawing, in agreement with a
previously published suggestion (Schoberl & Wagner,
1955). The lack of electron-withdrawing power is pre-

ABSOLUTE CONFIGURATION OF (+)-METHYL-p-TOLYL SULFOXIDE

sumably due to the presence of the unshared electron
pair. We note with interest that this lack of electron-
withdrawing power seems to be contradicted by the
sign and magnitude of the Hammett ‘¢’ constant
whose value places the electron-withdrawing power of
the sulfoxide group above that of, for example, chlorine
(Kosower, 1968).

The relatively small angle at C(7) presumably is due
to the electron-donating effect of the methyl group.
However, the similarly small angle at C(9) cannot be
explained as easily.

Table 8 gives the equation of the least-squares plane
through the benzene ring; also listed are the deviations
from this plane for all the atoms. The benzene ring is
planar, with the largest deviation found for C(9) which
is displaced 0-01 A from the plane. The ring methyl
carbon is also quite close to the plane; however, the
sulfur atom is tilted up from the plane by 0-06 A. As
already indicated by the C-C-S~O torsion angle, the
oxygen atom lies quite close to the plane of the ring.

Table 8. Least-squares plane through benzene ring
[atoms C(4)-C(9)] and deviations from plane

Normal equation of plane: —2-827x—7-004y+5:315z=0-392.

Deviation Deviation

S(1) 0-062 C©) 0-011
0(2) 0-234 C(10) —0:004
C@3) —1-667 H(11) 0-828
C(4) —0-004 H(12) —0-389
C(5) —0-003 H®13) —0-508
C(6) 0-004 H(14) —0-009
(6@)] 0-002 H(15) 0-150
C(8) —0-009 H(16) —0-120

H®{7) —0-030

The positional parameters of a structure in a non-
polar space group are not supposed to depend much
on the Af” values (Ueki, Zalkin & Templeton, 1966;
Cruickshank & McDonald, 1967). The bond lengths
obtained from the S configuration refinement (corre-
sponding to negative 4f”’ values) indeed agree well
with those for the R configuration. The largest differ-
ence in distances between ‘heavy’ atoms is about 0-01
A, or about 2¢. The temperature factors for the two
configurations differ by about one or two standard
deviations.

We wish to thank Professor L. H. Sommer for bring-
ing this problem to our attention. Support from the
National Science Foundation is gratefully acknowl-
edged.

References

ABrAHAMS, S. C. (1956). Quart. Rev. Chem. Soc. London,
10, 407.

AXELROD, M., BICKART, P., JACOBUS, J., GREEN, M. M. &
MisLow, K. (1968). J. Amer. Chem. Soc. 90, 4835.

Cann, R. S., INcoLD, C. K. & PRELOG, V. (1956). Experi-
entia, 12, 81.



ULRICH DE LA CAMP AND HAKON HOPE

CARTER, O. L., McPHAIL, A. T. & SiM, G. A. (1966). J.
Chem. Soc. A, p. 822.

CRUICKSHANK, D. W. J. (1961). Acta Cryst. 14, 896.

CRUICKSHANK, D. W, J. & McDoNALD, W. S. (1967). Acta
Cryst. 23, 9.

DAy, J. & CraM, D. J. (1965). J. Amer. Chem. Soc. 87, 4398.

FLEISCHER, E. B., AXELROD, M., GREEN, M. & MisLow, K.
(1964). J. Amer. Chem. Soc. 86, 3395.

HawmiLton, W. J. (1965). Acta Cryst. 18, 502,

HansoN, H. P., HERMAN, F., LEaA, J. D. & SKILLMAN, S.
(1964). Acta Cryst. 17, 1040.

HiNE, R. (1962). Acta Cryst. 15, 635.

Horg, H. (1969). Acta Cryst. B25, 78.

Hore, H. & CHRISTENSEN, A. T. (1968). Acta Cryst. B24,
375.

HucHEs, E. W. (1941). J. Amer. Chem. Soc. 63, 1737.

IBERS, J. & HaMILTON, W, C. (1964). Acta Cryst. 17, 781.

Acta Cryst. (1970). B26, 853

853

International Tables for X-ray Crystallography (1962). Vol.
III. Birmingham: Kynoch Press.

KLYNE, W. & PRELOG, V. (1960). Experientia, 16, 521.

Ko0sowER, E. M. (1968). An Introduction to Physical Organic
Chemistry, p. 49. New York: John Wiley.

MisLow, K., GrReeN, M. M., LAUER, P., MELiLLO, T.,
SiMMONS, T. & TERNAY, A. L. (1965). J. Amer. Chem. Soc.
87, 1958.

SCHOBERL, A. & WAGNER, A. (1955). In Houben-Weyl, 9,
219.

SCHOMAKER, V. & TRUEBLOOD, K. N. (1968). Acta Cryst.
B24, 63.

STEWART, R. F., DAvIDSON, E. R. & SimpsoN, W. T. (1965).
J. Chem. Phys. 42, 3175.

UEeki, T., ZALKIN, A. & TeMpLETON, D. H. (1966). Acta
Cryst. 20, 836.

ZACHARIASEN, W, H. (1963). Acta Cryst. 16, 1139.

The Crystal and Molecular Structure of Bromdihydroacronycine
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Bromdihydroacronycine

(1-methoxy-2-bromo-2’,2’, 10-trimethyldihydropyrano[5’, 6’-4,3]acrid-9-one,

C20H20NO;Br) crystallizes in the monoclinic space group P2;/c with Z=4. The unit-cell parameters
are a=9-06, b=12-66, c=16-66 A, and f=113-75°. 2173 reflections were recorded diffractometrically
(Cu Ka radiation) and used in the determination. The structure was solved by the heavy-atom technique
and refined by the method of least squares to a final value of R=0-059.

Acronycine, an alkaloid from Acronychia baueri Schott
which exhibits potent broad spectrum antitumor ac-
tivity, was initially considered to have either the angu-
lar structure (I) or the linear alternative (II) (Drum-
mond & Lahey, 1949). Since chemical degradation of
acronycine produced a dimethoxy acid which was not
identical with the independently synthesized dimethoxy
acid (III) expected to result from degradation of struc-
ture (II), Macdonald & Robertson (1966) concluded
that acronycine has structure (I). Govindachari, Pai &
Subramaniam (1966) also decided in favor of the angu-
lar formulation from a consideration of the nuclear
magnetic resonance spectrum of a hydrogenated de-
rivative of acronycine.
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Our three-dimensional single-crystal X-ray analysis
of bromdihydroacronycine (IV), the major product
from the reaction of 11,12-dihydroacronycine with N-
bromosuccinimide,* confirms directly the structural
assignment of acronycine as (I).

Slow crystallization of bromdihydroacronycine from
ethyl acetate afforded yellow, acicular crystals. The
cell parameters and symmetry, obtained from cali-

* We wish to thank Drs James Beck and Albert Pohland of
the Eli Lilly Co., Indianapolis, Indiana, for their gift of
bromdihydroacronycine. Their recently reported total syn-
thesis of acronycine (Beck, Booher, Brown, Kwok & Pohland,
1967; Beck, Kwok, Booher, Brown, Patterson, Pranc, Rockey
& Pohland, 1968) also confirms the structural assignment.




